The impact of interest rate ceilings on households'credit access

Carlos Madeira

Central Bank of Chile

November, 2017

Carlos Madeira (Central Bank of Chile)

TMC in Chile

< E

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- Interest rate ceilings (in Chilean law, TMC) may have several positive and negative effects:
 - a reduction in credit supply, especially among low income and riskier borrowers (Villegas, 1982, Rigbi, 2013);
 - an increase in informal credit (Zinman, 2008) or illegal types of loans (Collard et al., 2006, Reifner et al., 2010);
 - a reduction in the interest rates of borrowers with less information or inattentive (SBIF, 2015, 2016, 2017);
 - fewer "bad" loans less credit may improve welfare (Melzer, 2011).
- Chile introduced a law in December of 2013 which gradually reduced the TMC from above 50% to around 35%. Based on an analysis of all the debtors in 2013 which did not get new loans over the period 2014-2017, the SBIF (2017) estimates that the new law may have denied banking credit to a range of 151-227 thousand consumers. My estimate: 9.7% of households (197 thousand consumers).

500

- ₹ 🕨 🕨

A credit exclusion model applied to EFH-SBIF sample

This work estimates credit exclusion using a sample of 4,118 households from the EFH-SBIF panel: survey (2007-2014) + loan history (2013-2015). Households just below TMC (ex: $tar_{i,t} \in [TMC_t - 5\%, TMC_t]$) should receive more credit offers than families just above the TMC $(tar_{i,t} > TMC_t)$, even if their risk is similar: robust to macro shocks.

Well above
$$\mathsf{TMC}_{i,t}^S$$
: $1(tar_{i,t}^S > TMC_t^S + BW)$
Slightly above $\mathsf{TMC}_{i,t}^S$: $1(tar_{i,t}^S \in (TMC_t^S, TMC_t^S + BW])$
Almost in $\mathsf{TMC}_{i,t}^S$: $1(TMC_t^S - BW \le tar_{i,t}^S \le TMC_t^S)$
bandwidth $\mathsf{BW}=5\%$ (2.5%, 1%).
S is segment: all loans, exclusive users of 0-50 UF, 50-200 UF, or both.

 $\Pr(NC_{i,t} = 1 \mid t, tar_{i,t}^{S}, (tar_{i,t}^{S})^{2}, age - D, \ln(P_{i,t}), \text{ dummies for well above, slighly above, almost in <math>\text{TMC}_{i,t}^{S}$)

Exclusion Ratio:
$$\frac{E\left[\Pr(NC_{i,t}=1 \mid t, x_{i,t}(No - TMC))\right]}{E\left[\Pr(NC_{i,t}=1 \mid t, x_{i,t}(TMC_{t_{\Box}}^{S}))\right]} - 1$$

$$(1 + CA + TC_t) = (1 + tar_{i,t}) \left[(1 - \Pr(Df_{i,t})) + (1 - LGD) \times \Pr(Df_{i,t}) \right]$$

 $\Rightarrow tar_{i,t} = \frac{CA + TC_t + LGD \times \Pr(Df_{i,t})}{1 - LGD \times \Pr(Df_{i,t})}$

 $LGD = 0.50, CA \in \{7.5\%, 10\%\}, \Pr(Df_{i,t}) \equiv \Pr(Df_{i,t} = 1 \mid \beta, x_{i,t})$

 $x_{i,t} \equiv ($ Household income $Y_{i,t}$ in log, $\frac{D_{i,t}}{12 \times P_{i,t}}$, $\frac{CF_{i,t}}{Y_{i,t}}$, nr of hh members, hh unemployment risk $u_{i,t}$, region and high income county, sex-age-education-marriage status of hh head)

Expected income and unemployment risk (Madeira, 2015, 2017): $P_{k,t} = Y_{k,t}(1 - u_{k,t}) + Y_{k,t}RR_{k,t}u_{k,t}, P_{i,t} = a_i + \tilde{P}_{i,t} = a_i + \sum_k P_{k(i),t}u_{i,t}$ $u_{i,t} = \sum_k \frac{P_{k(i),t}}{\tilde{P}_{i,t}}u_{k(i),t}$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Income and Unemployment Risk (EFH-SBIF hhs in 2013)

Delinquency model - probit (EFH)

$\Pr(Df_{i,t} = 1 \mid x_{i,t})$	2007-14	2007-11
$ln(Y_{i,t})$	-0.135***	-0.144***
Debt to Expected Annual Income $\frac{D_{i,t}}{12 \times P_{i,t}}$	1.210***	0.915***
Financial charge to monthly income $\frac{CF_{i,t}}{Y_{i,t}}$	0.224**	0.439***
Nr of hh members	0.110***	0.104***
Age	-0.007***	-0.007***
Married man is hh head	-0.149***	-0.174***
Female	0.0737	0.0845
Technical college	0.0367	0.0495
College	-0.236***	-0.202***
Unemployment risk <i>u_{i,t}</i>	1.640***	2.073***
Metropolitan capital	-0.0429	-0.0843*
High income county	0.0348	0.0419
Constant	0.470*	0.596*
Observations	8,588	5,696

王

590

TAR of those with / without loans in 2013-15 (CA=10%)

Probability of a new loan (with population weights)							
$Logit\;(\mathit{NC}_{i,t}=1)$	M1	M2	M3	M4	M5		
Well above $TMC_{i,t}^{0-50}$	-2.430***	-2.742***	-5.958***	-5.996***	-3.690***		
Slightly above $TMC_{i,t}^{0-50}$	-2.823***	-3.007***	-6.027***	-6.047***	-3.667***		
Almost in $TMC_{i,t}^{0-50}$	0.401***	0.217***	0.0644	-0.0339	0.0494		
Before the Law $_t$	0.578***		0.0951*				
$tar_{i,t}^{0-50}$	-11.19***	-1.981*	-7.853***	14.18***	-7.208***		
$(tar_{i,t}^{0-50})^2$	16.73***	7.256***	2.800	-19.99***	14.41***		
$\ln(P_{i,t})$	-0.0341	0.151***	-0.123	0.135	0.142***		
Other controls:		Constant,	5-year age	e dummies			
Fixed effects: Time		Yes		Yes	Yes		
Fixed effects: HH			Yes	Yes	RE		
Observations	374,710	374,710	374,379	374,379	374,710		

王

590

Regresions: 3 segments (mutually exclusive)

Probability of a new loan (with population weights)						
Logit ($NC_{i,t} = 1$)	M2	M5	M2	M5	M2	M5
	Only 0	-50 UF	Only 50	-200 UF	Bo	oth
Well a. $TMC_{i,t}^S$	-2.513***	-3.183***	-3.735***	-3.948***	-2.306***	-3.308;
Slightly a. $TMC_{i,t}^S$	-2.440***	-2.691***	-4.592***	-4.585***	-2.941***	-3.555;
Almost in $\text{TMC}_{i,t}^{S}$	0.540***	0.423***	0.0777	0.0134	0.168	-0.09{
tar ^S	-3.202	-10.81***	-2.011	-8.862***	0.369	-4.309;
$(tar_{i,t}^{S})^2$	7.006*	18.33***	9.587***	19.39***	3.421	9.772*
$\ln(P_{i,t})$	0.0594	0.0459	0.291***	0.265***	0.188***	0.137*
Other controls:		Cons	tant, 5-yea	ar age dum	nmies	
FE: Time	Yes	Yes	Yes	Yes	Yes	Yes
FE: Household		RE		RE		RE
Ν	116,196		122,264		136,250	
Households	93	30	1,3	897	1,7	791
Carlos Madeira (Central Bank of	Chile)	TMC in C	hile		- November, 2017	9 / 13

Probability of	Probability of a new loan (with population weights)					
$Logit (NC_{i,t} = 1)$		M2 (BV	V=2.5%)			
	All	Only 0-50	Only 50-200) Both		
Well a. $TMC_{i,t}^S$	-2.848***	-3.022***	-3.844***	-2.312***		
Slightly a. $TMC_{i,t}^S$	-3.341***	-2.397***	-4.847***	-3.951***		
Almost in $TMC_{i,t}^{S}$	0.176*	0.382**	0.146	0.236		
tar ^S	-2.063*	-4.295*	-2.016	0.681		
$(tar_{i,t}^{S})^2$	7.781***	9.862***	9.610***	3.054		
$\ln(P_{i,t})$	0.153***	0.0585	0.291***	0.190***		
Other controls:	Cor	istant, 5-ye	ar age dum	mies		
FE: Time	Yes	Yes	Yes	Yes		
FE: Household	No	No	No	No		
Ν	374,710	116,196	122,264	136,250		
Households	4,118	930	1,397	1,791 • = • • = • =		
Madeira (Central Bank of <u>Chile)</u>	TM	1C in Chile		November, 20 <u>17</u>		

590

10 / 13

Households excluded from new consumer banking loans (percentage of the population of loan users)*

Year	Quarter	All	0-50	50-200	Both	T	ЛС
	Flow	FE ti	me year	-month	(M2)	0-50	50-200
2013	3	12.7%	8.6%	18.0%	9.5%	53.9%	53.9%
2013	4	15.3%	11.2%	20.9%	11.8%	50.0%	48.6%
2014	1	14.8%	10.6%	19.9%	11.9%	47.3%	45.3%
(\ldots)							
2015	3	22.8%	17.1%	28.9%	21.4%	36.5%	32.1%
2015	4	22.4%	16.7%	30.3%	21.0%	36.7%	30.4%
20150	Q4-2013Q3	9.7%	8.0%	12.3%	11.5%		

· < ≣ ▶ < ≣ ▶

< 4 →

=

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Estimates show that families Almost in TMC have much more credit than those Slightly above TMC. New law reduces flow of new loans by 9.7% (2015), equivalent to 197 thousand consumers.

Segment of (exclusive) users of loans with 0-50 UF had a lower increase in exclusion (% of consumers), but it represents a smaller population than the (exclusive) users of 50-200 UF or the users of both credits.

 $\checkmark \land \land \land$

Households excluded from new consumer banking loans (percentage of the population of loan users)*, with alternative values of administrative costs

CA							
Year	Quarter	CA=6%	8%	9%	10%	11%	12%
	Flow	FE t	ime yea	r-montl	n (M2):	BW=	5%
2013	3	6.6%	10.8%	10.7%	12.7%	13.3%	13.4%
2013	4	8.7%	12.5%	12.6%	15.3%	16.3%	15.9%
2014	1	8.8%	12.4%	12.4%	14.8%	15.7%	15.7%
(\ldots)							
2015	3	14.2%	19.1%	19.7%	22.8%	24.4%	25.0%
2015	4	13.9%	18.8%	19.4%	22.4%	23.3%	24.6%
20150	Q4-2013Q3	7.2%	8.0%	8.7%	9.7%	9.9%	11.2%

=

 $\mathcal{O} \mathcal{Q} \mathcal{O}$