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Summary

We present a method to infer the default correlation between loans
in a Single Risk Factor (SRF) model for a loan portfolio

We propose a two-stage procedure that takes advantage of
Probability of Default (PD) models already trained for the portfolio

We study the performance of this approach both with simulated
data and on a dataset of a portfolio of mortgages



Motivation: capital requirements for banks



Capital requirements under Basel |l

Banks using the Internal Ratings Based (IRB) approach, compute
the risk weights of their exposures using (BCBS 2006):

_ L d~1(PD) + ﬁd)‘l(a)
Risk Weight = 12.5- LGD [CD ( i ) — PD]

where

» «: confidence level (must be 0.999 for all exposures)
» PD: probability of default (computed by the bank)
» LGD: loss given default (could be computed by the bank)

» p: default correlation parameter (imposed by the regulator)
» For residential mortgages exposure, p = 0.15



Risk weights are very sensitive to changes in p

Assuming PD = 0.20 and LGD = 0.10:
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Empirical assesments of p

In spite of the importance of p, empirical assessments of its
magnitude are rare

In this work, we propose a method for inferring this parameter from
data on historical defaults

These data correspond to binary observations y;;, such that

)1 client i defaults at time t
Yit =13 o otherwise

However, in order to describe this method, we first need a
probabilistic definition of the Single Risk Factor (SRF) model for
credit portfolios



The Single Risk Factor (SRF) model



Merton's model

Merton (1974) described a method for pricing corporate debt
instruments

In this setup, a firm i defaults at time t if its liabilities D; are larger
than the value of its assets Aj;

Merton postulated a stochastic process for the value of these assets,
which after some manipulation can be expressed as

1
log(Aj¢) = log(Aio) + (Mf - 20';2) t + oVt (1)

where x;; ~ N(0,1).



Merton's model

Thus, the firm defaults iif

log £ — (pi — 507)t

A; 2% A

yit =1 xi < : VT = X (2)
where x;; is known as the Distance to Default. Moreover, the
probability of default can be expressed as

PDit £ P(yie = 1) = P(xie < xit) = ®(x;) (3)

where ®(-) is the standard normal CDF.



Extending Merton's model to retail exposures

If one knows the PD, but does not know any other firm
characteristic, then one can recover the distance to default by
inverting the above formula

xi = " Y(PDy) (4)

Although trivial, this last step is crucial because it allows us to
extend the model to counterparties other than corporations, where
assets are not the main driver of default (Résch and Scheule 2004)



Vacicek's model

Vasicek (1987) introduced dependency to Merton's model. This is
achieved by the following decomposition of x;;

Xit = /PMz + /1 — pejt (5)
where M; ~ N(0,1), €j id N(0,1) and My L e Vi, t

It can be shown that this decomposition preserves x; ~ N(0, 1),
and, more importantly, that

Cov(xit, xjt) = p, Vi # j, t (6)



Probabilistic model of default data

From the previous equations, we can “marginalize out” the x;'s by
noting that

. Xip — +/PM
P(yie = 1|M¢, p) = P(xit < x3|M¢, p) = ® (t\/li\[pt) )

Using this fact, we arrive at a hierarchical probabilistic model of the
SRF portfolio

p~ U(O’ 1)

M, % N(O0,1)

indep . X;; - \/ﬁMt>>
| My, p ™ Bernoulli (& ( 2t VPt
yit|M¢, p ernou |( ( N,



Bayesian inference for the SRF model

If we were given the true distances to default x;;, then we could
infer @ = (M, p) by using Bayes' Theorem:

plopy) = PR & pvie) p(6) 9)
Posterior Likelihood Prior

where Y = {y;:} is a matrix of default observations of size T x N

Alas, the true distances to default are unknown. . .



Previous work



Previous work

» Rosch and Scheule (2004)

» Proposes a Maximum Likelihood (ML) inference procedure for p

» Estimated jointly with a generalized linear model (GLM) for the
PD of the portfolio

» Since regression is at the portfolio level, it does not include
individual-level covariates (only macroeconomic)

» Applications to portfolios of mortgages (p & 0.0028), credit
cards (p ~ 0.0066) and other consumer loans (p ~ 0.0044)

» McNeil and Wendin (2007)

Suggests a Bayesian GLM mixture model (GLMM) approach
p becomes a function of the variance of the latent factor
Application to a portfolio of corporate bonds yields p =~ 0.075
Includes only a few covariates

vV vy vy



Previous work

» J. Crook and Bellotti (2012)

Maximum Likelihood inference of a GLMM model

Applied to credit card portfolio

Includes lots of covariates (account, client and macroeconomic
level)

Interesting finding: p is lower in times of economic distress

(p = 0.0024 versus p = 0.0003)

v

v

v

v

It is important to note that all of these methodologies require
estimating a PD model in order to infer p



Two-stage inference procedure



Incorporating the PD model

In order to deal with the unknown X}, we propose a two-stage
procedure that can be stated as

%5 = ©71(PDy) (10)

where X7} is a point estimate of the true xj;, and PDj¢ the output of
the PD model for the (i, t) observation

In other words, our approach is to use a “plug-in" estimator of the
distances to default, given by a PD model previously fitted for the
portfolio



Comments on the two-stage procedure

Two-stage methods are common in the estimation of copulas (Xu
1996; Joe 2005). The two stages are:

1. Infer marginal distribution of components assuming
independence (in our case, the PD model)

2. Infer copula parameters, given the estimates for the marginal
distributions (in our case, p)



Benefits of the two-stage procedure

» We can take advantage of PD models because they are
common components of risk management frameworks (Hand
and Henley 1997; J. N. Crook, Edelman, and Thomas 2007)

> No need to re-estimate a PD model just to infer p

» We only need to know the point estimates for the PD and not
the whole model

» Hence, we can accommodate any PD model

» This is important, since non-linear and non-parametric methods
with many covariates have shown better performance over
simpler linear alternatives (Lessmann et al. 2015)



Drawback of the two-stage procedure

Inferences on p could be sensitive to small errors in the point
estimates of the PD. To correct this, we propose a “robust”

alternative:
B ~ U(_OO>OO)
M, % N(0,1) (11)
indep . 65%;; - \/ﬁMt>)
i|Me,p, 8~ B (o | ——=220—
yit|Me, p, B ernou |( ( Vi

Here, instead of passing the point estimates directly, we fit a GLM
model with the point estimate as the sole predictor

Note that when 5 = 1, we recover the "naive” approach (nested)



Computational aspects

We implement the models in Stan, a probabilistic programming
language that uses a Hamiltonian Monte Carlo algorithm to draw
samples from the posterior distribution (Carpenter et al. 2016)



Hamiltonian Monte Carlo algorithm
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Simulations



Model coherence check

If we generate data according to the SRF model, we should be able
to recover the parameters that generated those data with our
inference procedures

In particular, Credible Intervals (Cl) of given nominal coverage «
should achieve a true coverage of « in repeated samples

Following Si et al. (2015), we:

» Sample K = 500 trajectories for a toy portfolio with T = 20
and N = 200 using the SRF model

» For each portfolio, fit the models and build Cl's with
a € {50%,80%,95%}

» Finally, assess the empirical coverages of the Cl's



Robustness to distortions in the PDs

The SRF model assumes the PDs to be exogenous. Thus, we
generate these quantities once from a Beta distribution and feed
them to the models for all the trajectories

However, to test the resilience of our methods, we also try to infer p
using distorted versions of the PDs

We control this distortion with a parameter g € [0, 1], such that
» g = 0: no distortion. We infer p using the true PDs (best case
scenario)

» g = 1: full distortion. We infer p using noise as the PDs (worst
case scenario)



True versus nominal coverage rates

Nominal coverage of 50% Nominal coverage of 80% Nominal coverage of 95%
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» When g = 0, both approaches achieve the true coverage
» On the other hand, as g grows, both methods begin to fail

» However, the robust method fails considerably less



Experiments



Application to a mortgage portfolio

A OO N 0 ©

2005 2007 2009 2011 2013 2015

—— Average PD — Average Default Rate

Application to a mortgage portfolio from Chilean banks, for which a
PD model exists at SBIF (Biron and Urbina 2017)

Sample size is T = 132 months and N = 754 individuals per month



Posterior distribution of p and 3

Kernel density estimators from MCMC posterior distribution samples
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» Output of both methods is similar
> Nevertheless, the region 8 > 1 shows most of the mass, which
implies a small but significant correction by the robust method



Posterior distribution of the latent factor
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(a) Monthly default rate and average PD (b) Posterior mean of M,

> M; tends to capture the volatility in the default rate that is not
explained by the PD model
» Output of both methods is similar



Posterior predictive checks

Naive (proportion inside = 80%) Robust (proportion inside = 85%)

P g

2005 2007 2009 2011 2013 2015 2005 2007 2009 2011 2013

— True value . 95% marginal posterior predictive band

» Using simulations from the posterior distribution, we
re-generate the time series for the average default rate

» The robust approach achieves a better coverage, although none
of them achieves the target of 95%

2015



Comparison using an information criterion

» The Watanabe-Akaike Information Criterion (WAIC) evaluates
the ability of models to generalize to new data (bias-variance
trade-off)

Model  Bias™! (1) Variance (2) WAIC = (1) - (2)

Naive -13770 63 -13833
Robust -13764 65 -13829
Fit PD -13697 151 -13849

» The robust approach achieves the highest WAIC
» Fitting a new PD model jointly with the correlation shows the
worst WAIC

> Its low bias does not compensate for the additional variance
introduced by the parameters of the PD model



Constant p?

0.04

0.03

0.02

0.01
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We investigate the assumption of constant p by applying the robust
method to 3 disjoint windows of time of equal length

Rho Beta
1.10 %
1.05
1.00
% 0.95 %
[Jan—04, Aug-07] [Sep-07, Apr-11] [May-11, Dec-14] [Jan-04, Aug-07] [Sep-07, Apr-11] [May-11, Dec-14]
» The posterior distribution of both parameters (p, §) seems to
be non-stationary

> Interestingly, we recover the finding by J. Crook and Bellotti
(2012): p is lower when the default rate is higher



Conclusions



Conclusions and further work

» Robust outperforms naive in simulations and real datasets

» Both methods outperform re-estimating the whole PD model

» Assumption of constant p seems unlikely — lends support to
improving the SRF model

» For example, p having different probable “states” and model the
probability of each state dynamically (Hidden Markov Model)

» Other approach is to think of clusters with different sensitivity
to shocks (ie, different ps), which might increase or decrease in
proportion dynamically (mixture of distributions)

Thank you
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