Systemic Risk in a Structural Model of Bank Default Linkages

Yvonne Kreis and Dietmar Leisen

Structural Model of Default

- Description:
 - Individual bank defaults iff assets < debt
 - Introduce default correlation through asset correlation
 - Study a banking system with N individual banks
- Analogous to default risk in a bank portfolio but there are two crucial differences:
 - Typically use "small" correlation in bank portfolios, but we empirically find large correlations in the banking system
 - Typically assume "large/infinite" number N but actual number is small in the banking system

Time Series of Correlation (Averages Across Largest 15 US Banks)

Micro-prudential Regulation and Banking Sector Default

- Micro-prudential regulation addresses individual default probability p_i=p for i=1,...,N banks
- To describe banking sector default, define
 - Indicator variable for default of bank i: X_i
 - Default frequency: $M_N = \frac{\sum_{i=1}^{N} X_i}{N}$
- If asset correlation=0, Law of Large Numbers implies

$$M_N \to p$$

- suggests that default frequency is "close to" individual default probability,
- Focus on micro-prudential regulation

Density of Default Frequency M_N (Correlation ρ =0; N=1,000 Banks)

For correlation=0: Here $p_0 = 3p = 46\%$ For correlation=0: $M_N \sim N(p, \sigma_N)$, $\sigma_N = \sqrt{\frac{p_0 - 3p}{N}}$; Here $\sigma_N = 0.3146\%$

Parameter: ind. def. prob. p=1%

Density of Default Frequency M_N (Correlation ρ =63.8%; N=1,000 Banks)

Systemic Risk Measure

- Summary of observations from previous slides:
 - Actual numbers N are "large" but too small to adequately capture "infinity"
 - In addition, correlations are far from zero, in particular close to 1 (maximum)
 - Default frequency "spreads" out to the right.
- Default frequency larger than micro-prudential reference level p=E[M_N] is problematic
 - Define Conditional Expected default frequency:
 - Systemic risk measure
 - Foundation for macro-prudential regulation

Systemic is Sizeable and Depends Non-linearly on Correlation

Parameter: ind. def. prob. p=1%

Evolution of Our Systemic Risk Measure

Conclusion

- Approach to systemic risk based on well-known structural model of credit risk
- Asset correlation
 - Strong non-linear impact on systemic risk measure
 - Empirically, increasing over time and typically "large"
 - Strong increases may signal systemic stress
- "Large" correlations mean macro-prudential regulation required

